Use of radial access in the Thiel cadaveric flow model for training in endovascular interventions

M. Salsano¹, H.M. McLeod², R. Duncan², S.Z. Matthew¹, J.G. Houston³;

¹Molecular & Clinical Medicine, University of Dundee, Dundee, GB,
²IMSaT, School of Medicine, University of Dundee, Dundee, GB, ³Clinical Radiology, Ninewells Hospital, Dundee, GB
Learning Objectives

To introduce a human cadaveric model for training in endovascular interventions through the radial access (RA).
Background

- Interest in RA is gradually increasing with mounting evidence of its clinical benefits, particularly the lower incidence of bleeding and vascular complications.

- However, RA requires a steep learning curve and is technically challenging because of anatomical complexities, such as subclavian artery tortuosity and radioulnar loops.

- More catheter exchanges are requested, with a consequent increase in procedure and radiation time and volume of contrast used.

- Recent data suggest that the exposure time using RA approaches that using transfemoral access with an increase in the experience of the operator.
Background

- Transradial access is not widely and consistently taught in fellowship programs.

- Animal models continue to provide a high-fidelity training model with blood flow, although their different anatomy, ethical issues and high costs are known limitation.

- Thiel cadavers with the addiction of extracorporeal flow are a recent option for interventional radiology training.

- The perfect anatomy, the retain flexibility, colour, tone, extended durability, negligible infection hazard and the vascular patency make them the a robust, reproducible, high-quality model that is ethically sound, to train multidisciplinary teams in complex endovascular interventions.
• Proof of concept was demonstrated using a Thiel-embalmed human cadaver with extracorporeal arterial flow.

• The extracorporeal circuit was prepared by inserting ports into the left axillary and femoral arteries and connected to a heart–lung bypass machine to provide continuous retrograde flow of up to 1 L per minute.

• The right radial artery was identified and punctured under US guidance and a 5F sheath inserted.

US guided access of the right radial artery
• Aortic and coronary angiogram, coronaroplasty, renal and lower limb angiography, and angioplasty were performed by an interventionalist, showing the patency and accessibility of vessels through RA.

• All endovascular procedures were conducted under fluoroscopic guidance using contrast.

Angioplasty of the left external iliac artery using a 6 mm standard balloon.
This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 324487.

Procedure Details

Left coronary angiogram using a 4F Judkins left coronary catheter

Left circumflex artery angioplasted with a 3mm standard balloon
Right renal artery angiogram using a 5F Multipurpose catheter

Right renal artery angioplasty using a 4mm standard balloon
Conclusions

• Thiel cadavers have the potential to provide a robust and realistic training model for fellows and consultants who want to improve or practice interventions.

• Training endovascular peripheral intervention through RA using Thiel-embalmed human cadaver is feasible and could reduce the learning curve for endovascular procedures through this access.
References

5. Coscas R, de Blic R, Capdevila C, Javerliat I, Goëau-Brissonniere O, Coggia M. Percutaneous radial access for peripheral transluminal angioplasty. 2015;

References

